classCutout(object): """Randomly mask out one or more patches from an image. Args: n_holes (int): Number of patches to cut out of each image. length (int): The length (in pixels) of each square patch. """ def__init__(self, n_holes, length): self.n_holes = n_holes self.length = length
def__call__(self, img): """ Args: img (Tensor): Tensor image of size (C, H, W). Returns: Tensor: Image with n_holes of dimension length x length cut out of it. """ (w, h) = img.size mask = np.ones((h, w, 3), dtype=np.int)
for n in range(self.n_holes): y = np.random.randint(h) x = np.random.randint(w)
for attempt in range(100): area = img.shape[1] * img.shape[2] target_area = random.uniform(self.sl, self.sh) * area aspect_ratio = random.uniform(self.r1, 1/self.r1)
h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < img.shape[2] and h < img.shape[1]: x1 = random.randint(0, img.shape[1] - h) y1 = random.randint(0, img.shape[2] - w) if img.shape[0] == 3: img[0, x1:x1+h, y1:y1+w] = self.mean[0] img[1, x1:x1+h, y1:y1+w] = self.mean[1] img[2, x1:x1+h, y1:y1+w] = self.mean[2] else: img[0, x1:x1+h, y1:y1+w] = self.mean[1] return img return img